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SUMMARY

The linearized attenuation theory of NACA Technical Note 3375 is
modified in the following msmner: (a) an unsteady compressible local
skin-friction coefficient is employed rather than the equivalent steady-

& flow incompressible coefficient; (b) a nonlinesr approach is used to
permit application of the theory to large attenuations; and (c) transi-
tion effects are considered. Curves are presented for predicting atten-

.
uation for shock pressure ratios up to 20 and a range of shock-tube
Reynolds nunibers. Comparison of theory and experimental data for shock-
wave strengths between 1.5 and 10 over a wide range of Reynolds nunibers
shows good agreement with the nonlinesr theory evaluated for-a transi-
tion Remolds nuniberof 2.5 X 106.

INTRODUCTION

The increasingly widespread use of the shock tube as an aerodynamic
testing facility has led to the closer investigation of the flows ~resent
in such tubes. ~ particular, since the deviation of these flows from
those predicted by perfect fluid theory is often of large magnitude,
these de~iations have been investigated fairly thoroughly. Several such
stuti’es,either of an experimental or theoretical nature, ~ be found
in references 1 to 11. hvestigations of the boundary layers in shock
tubes have been made in some of the aforementioned references as well
as in references 12 to 17. This list of references does not cover the
complete field of literature existing on these topics but is representa-
tive of the various general treatments.

Consideration of the entire flow field from the leading edge of
the expansion wave to the shock wave is necessary to obtain an accurate
picture of the waves traveling along the shock ttie. These waves are



2 NACA TN 4347

responsible for the deviations from perfect fluid flow in shock-wave
strength (attenuation) with distancej in pressure ~d density at a given
distance with time, and so forth, which have been notedby various
investigators. The analysis of reference 1 was the first to treat this
complete flow. Figure 1, a reproduction with mirierchanges of figure 1
of reference 1, is the basic wave diagram of the unperturbed shock-tube
flow showing the various flow regions to be considered with typical char-
acteristics and particle paths. This linearized analysis (ref. 1) was
based on an averaged one-dimensional nonsteady flow in which wall-shear
and heat-trsmsfer effects generated pressure waves to perturb the’perfect
fluid flow. This averaging process essentially implied thickboundary
layers. The e~ansion wave was treated as a “negative shock” or zero-
thickness wave. The resulting perturbation equations then hinged on the
evaluation of the local skin-friction coefficient cf, which in refer-
ence 1 was assumed to be given by an equivalent incompressible steady flow.
Consequently, the application of the results of reference 1 was limited
to shock pressure ratios in which this assumption for cf was valid,

although the analysis was still.applicable for ubher pressure ratios
when the proper choice of cf was employed. The assumption of incom-

pressibility should apparently eliminate the strong shock pressure ratios &
from the rsmge of validity.

Solutions to the lamin~ boundary-layer equations employing a linesr -

.

viscosity-temperature relation (refs. 2, 3, and 14) show that the non-
steady character of the flow is such that the equivalent laminar steady-
flow assumption is in error, irrespective of compressibility, for most
conditions except that existing in the cold-gas region ccfor strong shock
waves. On the other hand, the turbulent boundary layer is not nearly so
sensitive to the unsteady character of the flow. Reference 1~, which
assumed a one-seventh-power velocity profile similar to that of refer-
ence 1, reported that even for infinite shock pressure ratios the effect
of unsteadiness would produce only a maximum variation in turbulent skin
friction of 5 percent in the cold gas and of 22 percent in the hot gas.

The only other attenuation analysis to date that considers the entire
flow field is that of reference 2. This analysis is shnilar to that of
reference 1 in that it is a small-perturbation approach using traveling
waves and a negative shock, the major difference being that the pressure-
wave generations arise because the boundary-layer-displacementthickness
changes with the. (The boundary-lsyer-displacementthicknesses of
ref. 15 are used.) Flows with thin boundary layers having a linear
viscosity-temperature variation are required for this treatment to apply.
The attenuations predictedby references 1 and 2 for turbulent boundary
layers agreed within 10 percent for shock-pressure ratios up to 6 in
spite of the msrked differences assumed in the mechanism for handling
the wall effects. The perturbations in the flow behind the shock show

.

a larger difference between the two approaches.
.
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The deviations from ideal theory tiscussed arise for the most part
well effects, thst is, the perturbations in the shock-the flow—

caused by wall shear and heat transfer. Much recent work has been done
4 using the shock tube as a testing medium to provide very high-temperature

flows of short duration. (See, for exsmple, refs. 9 and 18.) In these
cases, deviations from idesJ fluid flow will also srise because the air
at high temperatures does not behave as en ideal fluid. It would be
difficult to sepsrate the real-gas effects from the wall effects; there-
fore, the present analysis, like those of references 1 +d”2, is con-
cerned only with the effects of well boundary layer upon the intiscid
outer flow, the fluid being considered as an ideal gas.

The turbulent theory of reference 1 has been compared Wth experi-
mental data for attenuation in references 1, 7, 8, and 10 and good agree-
ment has been found in general. Predicted pressure perturbations h the
hot gas by the method of reference 1 agreed well with the experimental
results reported in the ssme p~er. Fair to good agreement between
theory and ~eriment is reported in references 7 and 10 for the hot-
gas average density vsriation with the in the flow behind the shock
wave; poor agreement is reported for the cold-gas flow where the finite

h e~ansion fan has been treated as a negative shock.

. Since the deviations from the inviscid fluid flow often become
large in cases of aerodynamic shock-ttie testing, the linear, or small-
perturbation, theories of references 1 and 2 are no longer applicable
and recourse must be made to some sort of nonlinesx approach.

In order to obtain an exact theory for predicting the perturbations
in a shock-tube flow, a rigorous treatment would be required first to
the solution of the boundary-layer flows. The boundary-layer equations
would have to be solved not only in region B but also inside and after
the ~snsion fan which is considered to be of finite extent. For
l=inar flows the main difficulty would probably be the correct handling
of the viscosity variation across the boundary layer. For turbulent flow
a rigorous treatment ap~ars to be impossible without a tremendous
increase in knowledge of the mechanics of turbulence. Chicethe boundsxy-
l~er solutions were determined, the vertical velocity at the edge of the
boundary layer could, if the boundsry layers were thin, be used in the
manner of reference 2 to determine the local pressure waves generated.

The second major difficulty in obtsining a rigorous perturbation
solution would arise from the treatment of the entropy discontinuity.
The theoretical contact surface increases in extent with distance pro-
gressed down the shock tube due to mixing and diffusion (the former is
the major influence). This process not only generates pressure waves

. but also alters the reflected and transmitted wave strengths of the pres-
sure waves generated by the boundary layers.
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If a rigorous solution such as that just described was available, b
then.it would without question be the one
reference 1 and the theory of the present
effects can be averaged across the flow.
because no such physical mechanism exists
mission of these effects across the flow.
solution there is no evidence to indicate
a shock-tube Perturbation theory based on
l=ger magnitude than those introducedby

to be employed. The theory-of
report assume that the wall
This assumption introduces errors

i.

for the instantaneous trans-
In the absence of the rigorous

that the errors introduced by
an averegipg process are of a
the neglect of the aforementioned

considerations required for a rigorous solution. In addition, there is
the possibility that an averaging process might be more applicable as the
boundary layer fills a greater part of the shock-ttie cross-sectional
area. Consequently, the extension of the method of reference 1 in the
present smalysis is justified.

In the present paper the analysis of reference 1 is first modified
to eliminate the restrictions imposedby the incompressible equivalent
steady-flow assumption for local skin friction; and then a nonlinear
theory is derived which permits application of the analysis to large
attenuations. It will be assumed that the reader is familiar with the
basic theory and assumptions of reference 1 so that repetition in this &“

paper may be avoided. This modified theory will be compared with experi-
mental data covering a wide range of flow variables. The theoretical .
and experimental studies reported herein were conducted at the Gas
Eynamics Branch of the Langley Laboratory during 1955 and 1956.

SYMBOI.S —

Cn

Cf

%

velocity of sound

constant definedby equation (8)

local skin-friction coefficient, 2Tw/pu2

coefficient of specific heat at constant
volume

coefficient of specific heat at constant
pressure .

.
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D

()u~ 5*
E=l+

u@JT-l

.

h or T,n or T

K

M = U/a

hxlweahydraulic diameter, ~ertieter

functions defined by equation (39b)

constant defined by equation (36)

ratio of contributions of ~ waves to total
waves generated in region fll,

d4s-M

‘()

%,$

l+M~-ti8 rp

linesr attenuation with first subscript
describing boundary layer appropriate to
region CLand second subscript to region ~;

that is, %, T=pvsm-ppO ‘or regiona
Mm

turbulent with n = T &nd region ~ as
transitional

fixed distance along shock-tube axis

distance the shock moves from a given point
until the effects of transition in the flow
generated at that point first influences
the shock

Mp = U/ap
●

% ‘%/%
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morn

‘Pr

P,Q

P

R

R*

s

T

Tw

Taw

t

u

us

Uw

u

x

reciprocal of vel~city exponent in boundary.

arbitrarily denotes subdivisions I, 11, III,
etc. of hot-gas region

nonlinear attenuation
describing bounda~
region a and second

Prandtl number

with first subscript
layer appropriate to
subscript to region j3

2c~
characteristic parameter, — a~u

R

effective characteristicwave parsmeter
definedby equations (43)

static pressure

U’ggas constant; Reynolds ntier ~

U.&Reynolds number of transition, ~

entropy

temperature

wall temperature

adiabatic wall temperature

time

free-stream velocity

shock velocity

velocity of wave which generates flow

velocity in boundary layer

distance along shock tube from diaphragm
station

&

.-

.

-
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Y

~N

r

7

Al

A( )

Ax

,5j*

.

distance “fromsurface

function defined by equation (B12)

function defined in equations (31)

ratio of specific heats, Cpl%; assuraed

as 1.40 for computations

length of segment into which shock tube is
divided for nonlinear treatment

characteristic derivative in boundary layer:

D+lb’ao
ax ‘——Ueat

characteristic derivative in boundary layer,
a +15*lao— ———
a~ “ ueE

boundsry-layer
differential

boundary-layer

at

thiclmess; also indicates
quantity

displacement thiclmess,

characteristic derivative in potential flow,

&+( U~a)2&.

A

contribution to at~enuation due to P waves
in region j3

recovery factor, assumed equal to 0.85 for
lsminsr flow and 0.90 for turbulent flow

.
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00

boundary-layer momentum thickness,

~“;~ - :)dy

boundary-layer momentum thickness at g = ~o

Ed
K = — for E* > g~ and if E* s ~d, its value is 1E*

E*

1,II,III,etc.

coefficient of viscosity

coefficient of kinematic viscosity

distance flow has progressed

distance flow has progressed
at entropy discontinuity

distance flow has progressed
when 6 = e.

distance flow has progressed
at transition

density

along surface

along surface

along surface

along surface

wall shearing stress

influence coefficients, defined in appendix A

Influence coefficients definedby
equation (44)

compressibility correction

exponent in viscosity-twerature law~
pap

subdivisions of hot-gas region P for non-
linear treatment (see fig. 8)

.4

-“
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4 Subscripts: .

Letter subscripts not included in the symbols defined above refer,
d

in general, to values at points or within regions shown in figure 1.
Nwib-=ed wibscripts refer to points in figures 8 and 9. Exceptions to
be noted, however, are as follows:

m,n refers to velocity profne psrameter m,n

o perfect-fluid value

t at ttie t

Vs evsluated immediately behind shock, that is,
point v located at x = U8t

x at distsnce x

T denotes attenuation with transition

a

x arbitrary condition in shock-me free stresm

std denotes NACA standard atmospheric conditions

A prhe on a syibol indicates a quantity evaluated at reference
temperature.

THEORY

Derivation of Expressions For Lccsl

Skin-Friction Coefficient

The skin-friction coefficient for the flow behind wave-induced flows
will be foundby sn integral method. An incompressible skin-friction
coefficient will first be determined and then a simple compressibility
correction will be applied.

The integrated equation of motion for the incompressible boundary
layer with zero pressure gradient is (see ref. 14}:

. (1)
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The form parsmeter 5*/e is assumed to be constant; this has been *

shown to be true for the unsteady wave-induced lsminar flow (see ref. 14)
but has not been completely established for turbulent flows. Equation (1)
then becomes

b

(2)

Since the resulting expression for cf will ultimately be used in

the attenuation formulas wherein the integral
[

cf(g) d~ is desired,

the vsriable ~ is introduced. The variable ~ is defined as the dis-
tance a particle in the free streem has moved to reach the point (x,t)
since acceleration by the passing wave which originated at x = O at
t = O and which tra~els with

g(x,t)

In the case of flow in a

veiocity ~. Thus,

=##.$’@-x) (3)

shock tube, the value of ~ is Us for
the flows induced by shock waves. If the assumption of reference 1 is
followed and the expansion wave replaced by a wave of zero thiclmess,
moving with the speed of the leading edge.of the original expansion
wave, then ~ = -ae.

The differential equation (2) is transformed from the x,t coor-
dinate system to the ~,t system by using the following derivatives:

(5x=($)$$)x+(a‘W3t+(q
Thus equation (2) becomes

(4)

(5) “
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(6)

Now equations (2) and (5) are differential.equations capable of
solution by application of the method of characteristics. The slopes
of the characteristics are

for equation (2) and

+

for equation (>).

Thus, if the symbol
a characteristic of slope

AL . 15*1——-
M ueE

Af/& is used to denote the derivative alo~’
At/&, equation (5) may be written as

(7)

f

been

hold

For steady-flow boundary lsyers with zero pressure gradient, it has
established that cf = Cf(a,u,v). If this relation is assumed to
for unsteady flows in the ssme form as for steady flows, then

-.

2

()

-x
Cf=%:

For turbulent flows n is the reciprocal

(8)

of the exponent in the

fractional power expression Q =
()
~l/n used to describe the turbulent

U5
boundary-layer velocity profiles.‘ For bminar flows the value of n is.
one. The Cn terms are erbitrary constsnts to be evaluated later and
may be completely.differentfor the steady and unsteady flows.
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Conibiningequations (8) and (7)
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and integrating yields:

(9)

(10)

Substituting equation (11) into equation (8) to obtain Cf as a func-
tion of g yields:

A

2

1

--
n+3 .

+U
(

;E-EO

(12a)

(w’b)

1- -. -1

For the special case of 00 = O at ~. which corresponds to flow

initiation at ~. there results

(12C)

The values of the VSZiOUS Fn terms, which me directly related to

the hitherto arbitrary ~ values, will nowbe determined to match known
solutions for certain limiting cases. If the ratio ~/U becomes .

infinitely large, the solution must be the ssme as that for an infinite
flat plate in contact with a fluid impulsively started from rest at time
t=o.
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Under these conditions

E=$
(13)

The solution, lmown as the Rsyleigh solution, to such an impulsive lsminar
flow over a plate is

1

Cf(E)
01

U%-z= 1.128Y
(14)

()6*
‘“ Rayleigh

= 2.4@

J

Consequently, in order to match the Rayleigh solution for the lsminar
case (n = 1)

~

()2Fl ~ = 1.128

or

F1 =o.p.8 (15)

On the other hand, if ~/U becomes infinitely small, the solution

must be the ssme as that over a semi-infinite flat plate in steady flow
(that is, the so-cal.ledBlasius problem). For these conditions

E = 1.0

-— 1

(=):3)
cf(~) = FnU

.

(16)
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whereas the corresponding
is

Cf

I’WCAm 43k7

form of the Blasius solution for lsminar flow

>

= c).+, - ,.)l-+
(17)

Thus, if the Blasius solution were to be matched, it wouldbe nec-
essary for

F1 = 0.664

Two possible solutions are then avail~le for the lsminsr
incompressible-flow case depending upon which limiting value is matched:

()%Rayleighli.mit — +co :
u

()%Blasius limit ~ +0 :

(18a)

In figure 2 the values for c,~~ as determined by four

.&

-—

.
—

different means are plotted against pressure ratio across a shock in an
air-air shock tube. The upper branch of the curves applies to region 13
behind the shock, and the lower branch applies to region abehind the zero= -
thickness expansion wave associated tiththe shock of strength p~olpm.
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d In addition to the values determined from equation (18), there are shown
values which would be obtained, if the fluid were assumed to be incom-

* pressible, by the integral method of reference 14 and the numerical solu-
tion to the Prandtl boundary-layer equations. (The results of ref. 15
are applicable to this numerical solution.) The agreement between both
the curves of equation (18) and the referenced curves is very good. How-
ever, since the curve based on the Rayleigh limit gives a better approxi-
mation in region 13,which will be shown to dominate the attenuation equa-
tions, the Rayleigh values of F1 = 0.718 and 5*/e = 2.46g shallbe

used for the remainder of this paper. Reference 17 also employed a nor-
realizedRayle@h velocity distribution in the treatment of flow induced
by shock waves.

For the turbulent case two smalogous limiting processes sre not
available in order to determine the vslues of Fn. The turbulent boundary-

layer theory is semiempirical and relies on experiments to supply con-
stants for the resulting equations. Since no “Rayleigh-type” experiments

%have been performed, there is no limiting process — +m to apply for
u

the turbulent case. There is, however, the semi-infinite flat-plate
&

solution corresponding to the limit — +0. This solution (see refs. 1
u

()~1’7and results in a skin-and 19) assumes a velocity profile ~ =
U5

friction coefficient expressed as
1— —-—

cf(E) = 0.0%1 [1kAJ’
v

The ccmibinationof equations (16) and (19) results
F7 =0.Ofil.

in a value of

l/n

()
For profiles of the fsmily ~ = ~ it maybe shown that

u

e—=
~ (n+l~n +2)

5* 1.=—
5 n+l

6* n+2—=—
e n 1

(20)
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Therefore, the expression for the one-seventh-power twlmlmt veloC-
ity profile skin-friction coefficient in the nonsteady incompressible
flow becomes

.

—

v

Since there was only a minor difference between the unsteady-flow
values of cf for lsminar flow when based on the limiting cases of

&O and ~+. , it is expected that the turbulent-flow agreement
u u

would be just as favorable if results were available for

sequently, equation (21) is assumed to be a fairly close
to the correct answer. Equation (65) of reference 15 is
to equation (21) but was derived in a different way.

. .
%7— +02. Con-
U

approximateion
very similar

h

The skin-friction-coefficientrelation of equation (19) corresponding
to the one-seventh-power profile law is no longer valid at arbitrary large -
values of Reynolds numiberin incompressible steady flow. Instead a loga-
rithmic law is often used. (See ref. 19.) However, since a power profile
is easily handled by these methods, the skin friction
plate for these large Reynolds numbers is found to be
mated by the relation

1-=

[14 - d 8Cf = 0.0186
v

which is compatible with the relation ~ = (y/5)1/13●

it is further assumed that 5*/e has the vslue 15/13

on a semi-infinite
closely approxi-

(22)

If for consistency

(the value for
n= 13), then the unsteady skin-friction coefficient wouldbe givenby

(23)

No claim is advanced that a l/13-power profile actually exists at these
higher Reynolds nuuibers;it is only necessary for equation (22) to be
valid for steady flow and the value of 8*/e tobe 15/13.
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* It was shown in reference 14 that the skin friction in region a is
correctly given by the method of characteristics using the boundary con-
dition e =0 for ~ =0 at x=-act (that is, on the zero-thickness.
e~ansion wave) for that part of a where x < Ute/5* and the boundsry
condition e =Ofor~=O.atx= Ust (that is, on the shock wave)

for that part of a where ute/5* < x Sut. Sketch (a) shows a boundary-
lsyer momentum characteristic. h order to determine the unsteady fric-
tion coefficient at point c in the region in question, ute/5*Sx Sut,
the bound- condition of EJ= O on the shockwave (mint a) is correct.
In the snal~sis which follows, the boundary condition e = O on the
e~ansion wave (point b) is used instead. Friction coefficients are
shown qualitatively in sketch (b). The solid curve represents the case
with the boundary condition on the shock whereas the dashed curve repre-
sents the case with the boundaqy condition on the expansion wave. In
the region in question it is seen that the differences are not serious.
Because of the relatively small contribution of region mto attenuation
as compared with the contribution of region 13and also in the interest
of s~licity, this error is neglected.

.

.

Boundary-wer characteristic,
Ax—= u~ -
At 6*

\

t
t

Sketch (a)

t
Cf

/
\

—1

Sketch (b)

In order to handle the transitional flows which occur behind the
waves in a shock tube, some approximation for ~ in the transition

region must be employed. Any of anuriber of assumptions is possible in
this region. However, in tiew of the many assumptions already present

s
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in the theory, the least complicating supposition will be
this case; namely, an instantaneous transition is assumed

employed in
and the value

of Cf in the t~bulent region will be taken as the value which would
be present had turbulent flow existed since the initiation of flow. In
other words, at the transition point the local cf changes discontinuously

from the kminsr to the turbulent value and the value ~. = O then applies ‘
in both lsminar and turbulent regions. This assumption was used in the
logarithmic transitional curve for steady flow of reference 19. Figure 3
compares the integrated skin-friction coefficients of reference 19 with
the curves obtainedby the various power laws and the foregoing transi-
tional asswiption. The agreement appesrs to be very good.

A simple compressibility correction wi.lJ.be basal on the intermediate
temperature or T~c saniempirical.method. This correction, expounded in
reference 20 for laminar boundary layers and in reference 21 for turbulent
boundary
apply to
taken as
Thus, if

layers, assumes that the incompressible skin-friction relations
compressible flow if the propefiies of the camnressible flow are
some intermediate value between
the relation

,_ Tw
% (=Fn~

&?

applies to a steady incompressible flow,

the wall and &ee-stream values.

2-—

)

n+3
e

then

2-—

TV ()
n+3

Cf‘ S_=Fn +!
$’$

(24)

(25)

will apply to a steady compressible flow for a certain choice of the
primed state. The following values of the intermediate temperature T’
are given (see refs. 20 and 21):

For lsminar flow:

T’ ()TM
—=1+0.032M2 +0.58-- 1
T T

(26a)
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*
For turbulent flow:

9

T’ ()Tw—=
T

1+ 0.035M2 + 0.45—- 1
T

It may be shown that for an arbitrary reference state, which may be
either wall or free stresm, equation (25) may be put in the form

2 n+l 2-——

Cf =

G= F”F’) ‘+’(V’($)N3
2

temperature-viscosity relation of the form

is assumed to apply, then the steady-flow
becomes

19

(26b)

(27a)

(27b)

compressibility correction ~

(28)

It is asswned that this T’ method is also applicable as a compres-
sibility correction for the unsteady-flow skin-friction coefficients.
Compressibility corrections in hot and cold gas & are plotted against
shock pressure ratio in figure 4 for an air-air shock ttie. The value
al= 0.8 has been used to compute these curves.

The results of this section msybe sumnsrizedby the following
expressions for skin-friction coefficient:. 1
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(29)

where

m-l 2

Evaluation of the Linearized Attenuation Expressions

The basic linearized attenuation expressions derived in reference 1
are summarized in appendix A. The following expressions result from the
first identity and subsequent substitution and manipulation of the per-
tinent equations from the a~endix:

PVs -Ppo=%s-pf+pf-pc +PC-%+%-P*
ac a~ a~ ae ac (x)

r 1

(314
.
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Since

%3 .~- P$o

P$o 2

(see ref. 1) the following relation

ae Pv~ - P$o

‘J30 +

results

(31~)

(32)

(33)

in which the subscript m applies in the laminar range OS Ea,p = ~a,~*
and the subscript n applies in the turbulent range ~a,~*~~a,~~ ~d.
The value of ~ is defined as ~d/~* fOr ~*~ Ed and as ~ for ~*~ Ed.

The total linearized attenuation is thus made up of the sum of the
effects of regions a and ~. This relation maybe expressed mathematically
as
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where

.

(35a)

(y--fj .:&*(.,,mJKE’*cf,,,m.5+r,,nJ:;*cf,,,n.j
(3>)

NOW, with cf expressed in the form

or

integration of equations (35) results in the following equations. (The
subscript X designates either region a or region j3.)

(37)

.
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* Rearrangement

t-
*

(%slip9x,m,J++-

23

of terms of equation (37) produces

(*)

where

4)Ux Vm -ii%
gti=f ——

am v%

m-l
(39b)

Note that fti is a function only of the shock pressure ratio p
$01%

and the value of m for any region X. The term g% requires in addition

a temperature-viscosity relation which may be either an exponential type or
some other form, such as the Sutherland equation.

For the case of no transition when the flow is either completely
laminar or completely turbulent, equation (39a) reduces to
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(40)

The attenuation in this case for a given initia tiue of PPo~m is

obviously dependent only on the two psmmeters expressed as hydraulic
diameters of shock-wave travel Z/D end shock-tube Reynolds number
a#/vw.

For the case with transition three par~ters me required to
describe the phenomenon at a given ifiti~ v~ue of PBo/P~ the t~rd

parsmeter is the transition Reynolds nuniber R* and ent~rs into the
analysis in the following manner:

(41)

When equation (41) is substituted into equation (39a), the lineer
trsmsitional attenuation relation becomes:

.~JLJ- is a function of pwhere the term #loplB” Thus, at a given
IJVm Ed

value of P~lPm the linearized attenuation is a fl.mctiononly of Z/D,

&@lVm, and R*.

The attenuation functions WJ the compressibility Corrections

~ and their products are presented in table I for shock pressure
.

ratios from 1.0 to 20.0 and for m equal to 1, 7, and 13. It maybe
seen by inspection of equation (40) that, for given shock tube Z/D, .

Reynolds nu?iber
./

a# Vm, sad no transition, the attenuation contribution
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*
of the region X is directly proportional to the product (%)=” rn order

to demonstrate graphically the behavior of these compressible attenuation
functions, they have been plotted in figures 5(a) and 5(b). The mgni-
tude of the contribution of region p to attenuation increases monatomically
with increasing pressure ratio, is always negative in sign, and thus tends
to increase attenuation. On the other hand, for low pressure ratios the
contribution of region u tends to increase attenuatim; above a shock
pressure ratio of ebout 5.9, the trend is reversed aid region a contri-
butes compression waves that tend to decrease attenuation. This reverssl
is discussed more fully in reference 1.

When no transition is considered, the attenuation function for the
entire flow field is found by adding the contributions of regions a and 6.
For the cases where the prof-fleexp&ent m is
the total compressible attenuation function has
shown in table I and in figure 6 for values of

the same in both regions;
been computed and is
m of 1, 7, smd 13. This

function is

The results

given as

of using the methods of references 1 and 2 are also shown
in figures 6(a) and-6(b) for values of m of 1 and 7, respectively.

For the laminar case the curve in figure 6(a) representing the
method of reference 1 falls far below that of the present report, pri-
marily because of the imprtance of the neglected unsteadiness effects
as discussed in the introduction. The results of reference 2 are also
below that of the present re

Y
rt (approximately ~ percent for shock

pressure ratios frcm 4 to 10 and show better agreement at higher ~res-
suxe ratios (only 10 percent below for a shock pressure ratio of 20).

Agreement between the methods of references 1 and 2 and the present
method is better for the turbulent case (m = 7; fig. 6(b)). The neglect
of unsteadiness has a smaller effect upon the results of reference 1,
although the effects of compressibility still give significant devia-
tions at shock pressure ratios near 10. The present results and the
results of reference 2 are in agreement within less than 15 percent for
‘shockpressure ratios up to 10 and then diverge to a 20-percent varia-
tion at a shock pressure ratio of 20.

Figures 5 and 6 show that the cold gas contributes only a small

/ P
part of the total attenuation for PPO pm < 20. At Ppo . = 20 the

relative a contribution is larger than that for p
Pop?

< 20; however,
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it is only about 4 percent, 15 percent, and 25 percent of the total for
m= 1, 7, and 13, respectively.

Evaluation of Nonlinear Attenuation Expressions

The expressions derived previously are based ona linearized or
small perturbation analysis. However, for many conditioti encountered
in the shock tube, the attenuation is no longer small. In order to maxi-
mize the totql avail~le experimental testing time, most experimental
work is done at values of t nearly equal to the total length of the
low-pressure side of the shock tube. At these large values of 1 the
shock strength often has decayed markedly from its value for small 2.
Consequently, relations for the attenuation under these conditions would
be very desirable.

An approximate method to obtain the attenuation for the cases where
the small perturbation analysis is invalid will be described. First,
consider parameters P and Q which are related to P and Q by

(The parameters 5 sad G of this report are identical to the param-
eters P’ and Q’ of ref. 1.) When equation (43) is substituted into
equation (6o) of reference 1, the following equations result:

(44a)

—
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(44C)

As discussed in reference 1, the changes in ~ and
in changes by wave motion of velocity and pressure but do
the vsrious changes in entropy. For example, if equation
for &p/p,

.

a are evident
not indicate
(Ma) is solved

(45)

The value of ; is associated with waves moving wtth the flow at
a velocity of u + a whereas ~ iS associated with waves of the opposite
fsmily moving at a velocity u - a. Now, for the Mnear attenuation
theory it is assumed that reflections
lion in entropy rise a~mss the shock

QVS=QVS=Qgio or ~~s=6~s=0.
for the attenuation e~ression is

at the shock wave and the devia-
wave may be ignored; that is,
Consequently, an alternate form

L
(:)reflectiO<(’$ll (46)

where the three terms on the right-hand side of the e uation represent,
respectively, the contributions of region a, of the 4 wave generated
in region 13and reflected at the entropy discontinuity, and of the ~ wave
generated in region 13. Consider now the last term only. The increment~
change @ along the characteristic is then
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A change of ve,risblemay be made (eq. (21) of ref. 1) to ~ since

CMs - Mp
Ubt. -d~

OMs - Mp-1

b

(47) .

r

(48a)

(48b)

Substituting equation (45) into equation (48) yields:

In equation (49), the left-hand side represents the pressure per-
turbation at the shock wave due to the wave generation only along the
forward running (slope of u + a) characteristic. For a complete
linearized treatment K and I’P maybe taken outside the integral and

equation (35b) may be employed to obtain:

.

.
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Thus, K iS
slong the forward
in region ~.

results from

designated by

The

the ratio of the contribution of the
running characteristics to the total
remaining portion of the attenuation

waves generated
waves generated
contribution of

~ waves reflected at the entropy discontinuity and~be. .

H@—.A which is equal to

p ,,i$.s=’’-’’(%si:b)p()~ (51)

The vslue of K is plotted against shock pressure ratio in fig-
ure 7. The fact that K does not depsrt sighificsatly from 1.0 means
phYsica2J.ythat t~e principsl contribution to attenuation in region ~
=ises from the P waves. Since figures 5 and 6 have shown region ~
to have a much larger effect on attenuation in general then region a,
it is obv~ous that the theoretical dominating factors for attenuation
are the P waves of region ~. This conclusion has been discussed pre-
viously in references 1 and 2.

Since the ~ waves of region ~ dominate the linearized attenuation,
solution, it is next assumed that a confection for the linearized solution
may be found by operating only on the P waves in region P. Thus P waves
generated in region u and transmitted at the entropy discontinuity as well
as the ~ waves generated in region 13and reflected at the entropy dis-
continuity will retain their original linear or small perturbation values
even though the attenuation is no longer small. It is further assmned
that region s msybe subdivided into a ntier of smaller regions in each
of which the lfnesr attenuation relations for ~ sre valid. This treat-
ment is illustrated in figure 8. me arbitrq interv~ AZ detetines
the x-wise extent along the shock wave of each of the regions designated

@,@, . . . . Each of these regions is boundedby the shock wave

and two fluid particle paths where each fluid particle velocity is equal,
respectively, to that generated by the shock wave at the beginning of
each new interval. The inviscid flow inside each of these regions is
considered to be constant; sad, consequently, there is a smell discon-
tinuity in the inviscid flow across the particle-path boundaries assumed
in the model. These discontinuities csm not, of course, exist in the
actual physical flow which requires a continuous variation throughout
all the regions as well.as reflections from the shock wave. The errors
introducedby the assumption of constant quantities in each region are
not considered to be large and should be of approximately the ssme order
as those found in the familiar steady-flow graphical characteristic
solutions of finite mesh size.



30 NACA TN 4347

In order to simplify the computational procedaue, it is assumed
that for a given region the slope ~x/M of the P characteristic and
of the shock wave are constant both inside and outside of that region.

o
Thus, in figure 8, when the ~ contribution of region I to attenua-

tion between Al snd 2 AZ is computed, the assumption is made that

the characteristic = and the shock path ~maybe extended ta inter-
sect at point 2. (Nunibersrefer to points in fig. 8.) The corresponding

correct regional.characteristic line snd shock paths sre 6,7,8 and 0,1,8
which exe shown in this illustration as intersecting also at the ssme
value of x as 2. This intersection at the same value of x is only
an idealization and is not the true physical picture in genersl. How-
ever, since the attenuation effect (generation of 1? waves) falls off
rapidly with distance behind the shock (stiilar to the fell off in locsl
skin friction with distance back of a sharp leading edge in steady flow),
the contribution to attenuation in the interval from AZ to 2 AZ due

to generation &Long 6,7 is wch less then that due to generation SLong

~; thus, small errors in the location of~will result in very small
errors in the attenuation at 2 Az. This assumption for establishing
the intersection points of”the characteristics and the shock wave down-

0
stresm fhm a region N without knowledge of the downstream shock-wave

o
attenuation permits the easy computation of the influence of region N

for all downstream shock locations.

When the regional a~roach described dove is applied, the attenua-
tion for the first interval AZ is identicsl to the complete linear
approach. Thereafter, huwever, the various second-order effects are

felt.
o

The effect of region I on attenuation of the shock during the

interval from Al to 2 Al differs from its effect in the basic lineer
theory because of the convergence of the psrticle paths since Ua < UI.

This msy be shown as follows. From equation (48),

(52)

.

.
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The nunibersrefer

lines fi, 10,11,

to the points on figure 9(a).

and 6,7,2 sre drawn with slope

31

In this figure the

(U + a)I; the lines 7,1O

=d 0,9,1, u,2 tith slope U~l; the lines o,5,1o,6 qnd~with slope U1;

and the line ~with slope U1l. Therefore, E7 =m=~=.~lo.

~lo OMs - &I( ‘) Cf’fk>I d~

56 ‘is- Mp-ll

~(@~;~I)~~’6c%,Id~ - &Ocf@,Jd,)

(53)

contribution of regionoI to attenuation between 1

and 2 is (from eqs. (45) and (53))

The substitution

tion (%) yields

().4
‘~ 1,0 to

of equation (40),

22

with

()Q
‘B 1,0 to z~

gn replaced by

(54)

A
gn, into equa-
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I

‘(am(If%)%I

L

where
()

6;
is the linear attenuation of

EIAZ
> 0over the initial interval. AZ in region I .

(55)

1

a shock due to ~ effects

The relationship between 211 end 21 is derived in &ppendix B

and is

(56)

Consequently, >

. . ● ●
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.

.

which for equal intervals AZ becomes

. . . . .

(5P)

J

In this form the nonlinear attenuations can easily be computed.

oIn this msmner the influence of region I on attenuation at any

desired vslue of Z may be computed once the attenuation at 21 has

been found. oThe influence of region II is found in a similar msnner

by shifting the effective origin of the coordinate system tb 21 snd

()8;
finting for the attenuated shock strength at 21; that is,

=H

.
.

. . .
)

(m)

—-—
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or for equal intervsls of Al,

()$‘m 11,22 to 23 ‘(:)~l,Az!s-(z’l;%]

().$ =‘()s
P
m 11,13 to 24

P
m II,Al

. # .

n+l

( )-]
2z~ ‘+3

NACA TN 4347

. .

J

(58c)

The total nonlinear attenuation at a dist&nce Z from the diaphrsgm
station which has been sulxlividedinto several intervals Al is then
expressed as the sw of the linear contributions of region a.and the .

reflections from region P added to the nonlinear contributions of region p.
The following expression is obtained for the nonlinesx attenuation:

(s9=)

(59)
.

where i is the index.
.
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Second-order attenuation in the presence of transition may also be
treated by this regional system. The contributions of CL and of Q
sd S in P sre still treated as entirely linesr but including transi-
tion. Equation (39a) applies in its entirety to the a contribution;
and, when the first term on the right-hand side is multiplied by 1 - ~

and the second term by 1 - Kn, the resulting equation gives the Q

and S contribution of region P.

The transitional ~ contribution is treated as follows: L& Z*
be the position of the shock at which the transition in the flow behind
the shock first affects the shock. The wave disgrsm for transition is
shown in figure 9(b) where for illustrative purposes it is assmd that
Z* = 2AZ. Now, in order to retain the facility of computation afforded
by the regional sy@m with equal AZ and a constant Z*> the v~ue of
R* will, as a result, vary slightly from region to region. Since

($)N=(+N
.

the magnitude of this variation maybe found by examina-

tion of figure 10 which shows the parsmeter

() P=,stdu E*.—
‘Z*N Pm

plotted against shock pressure ratio. From this figure it is evident
that, if the shock pressure ratio should attenuate, for exsmple, from 20

to 15, or from 5 to ~, there wouldbe *out a 10-percent decrease in

R* for a given 2* and pm,stdlpm. me errors introducedby such a

vsriation in R* sxe not de&med’to be important enough to force the
abandonment of the equal Al c~uting scheme. For the remainder of
this paper, R* will be tsken as the vslue of the transitional Reynolds

onuniberin region I . The $ contributions for the transitional case

are ~ressed by the following equations which are modifications of equa-
tions (57), (58), and (59) (the subscripts m and n refer to condi-
tions before and after transition, respectively):

-—

(g)N,m,A;(am).(:)‘3(%T (60a)
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.

(60b) -

for

&“ -1+2
Al - Al

(61b)

for

Numericsl Evaluation of Nonlinear Theory

Several computations to determine the nonlinear correction factors
for attenuation were performed for vslues of the interval AZ/D of 3.5
and 14. These particular values were chosen because they represent
increments of AZ of 0.5 foot and 2 feet for the shock tube employed in
the expertients to be described in a later section. ~ical curves

—
.

resulting from such computations are shown in figure 11. The ratio of
the nonlinear attenuation to the linear attenuation is plotted against 2/D

.
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for sn initial

For values of

shock pressure ratio of 4 and a value of = of 0.01 x 1060
Vm

Z/D > 50 the curves for
AZ
—= 3.5 and14 agree within

n

about 1 percent for the lsminsr case and ~thin about 3 percent for the
turbulent case. The low value of @l/vm accentuates any variations
between the two computations; thus the c~e illustrated gives a discrep-
ancy near a maximum rather than near a minimum. Examination of seversl
such pairs of curves resulted in the conclusion that the slight Increase

in accuracy obtained by using ‘~ = 3.5 tid not justify the fourfold

increase in labor. Consequently, the computations with ‘~ . 14 ~e
D

used to predict the nonlinear attenuation for Z/D~ 50.

It is obvious that the finite size of A2 will introduce errors
in the ratios N~,~l&,n which are l,argestnear Z ~0 since the non-

linesr snd linear attenuations sre identical for the first interval.
(See fig. Il.) However, the errors introduced in the attenuations ~,n

themselves are small since &,n+O as 2 +0. To represent the physi.

cel flow in this region accurately would require that AZ approach O.
Interpolation formulas giv-ingacceptable accuracy near 2 +0 are assumed
to have the form

-1
Nonlinesr attenuation 0.5

() I=(Constant) ~
Linear attenuation

> (62)

Nonlineecrattenuation 0.8

() J
= (Constmt ) :

Linear attenuation

( )z < 56 for lsminsr and turbulent flows, respectively, sincefor 0<5=

the ~near atte&ation is proportional to (Z/D)0”5 and (2/D)0”8 for
the laminar and turbulent flows:

The constsmts are chosen ’tomatch the computed curves for — = 14AZ

II

a% 1- = 56. From figure 11 it is evident that the errors resulting from
D

the application of this interpolation formula are less than the afore-
.
L

mentioned errors at - = 50 and sre thus accept~le.
D
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In order to obtain curves,of the transitional nonlinesr to linesx .

attenuation ratio ~,T/~,T for a constant value of R* and several

shock pressure ratios, a cross-@otting technique was used. At a given
shock pressure ratio the values of N~,T/L7,T were computed for several

vslues ,ofthe ratio

/

2*/D to AZ D. Since each 2* represented an R*,
the resulting ratios for each 2 D couldbe plotted s@nst R* for a
given shock y“ressureratio. The vslues for a particular R* could then
be read from these plots to produce a master plot with a cmmon value
of R*. —

Plots of the ratio of nonlinear attenuation to linear attenuation
are shown in figures 1.2to 15. In these curves region a is slways con-
sidered as.having turbulent flow whereas four cases me considered for

&
region ~: nsmely, (a lsmlnar flow, (b) turbulent flow, (c) transition
with R* = 1.25 x1O , and (d) transition with R* = 2.5 x 106. The
cross-plotting parameters are shock-tube Reynolds nmiber @/vm and
length of shock-wave travel expressed in hydraulic dismeters Z/D. At
the lower pressure ratios p~o/pm, cties for more values of &D/v~ are

shown than at the higher pressure ratios. This lhrLtation resulted from
the considerations of the restriction of the validity of the theory to
an ideal gas, the region of experimental data of this report, the most
likely general region of experiments for other facilities, and priority
for computing effort. Since figures 12 to 15 are the result of cross
plotting, the accuracy is assumed to be about 2 percent.

.

.

An analytic closed-form investigation has been made of the fact
that the limit of N~,l/~,1 approaches,O when p@/Pm approaches 1

-.

whereas the limit of NL7,7/127,7 approaches 1.0 when p~/pm

a~roaches 1.0. This second-order analytic solution for weak shocks
indicates that a value of n = 3 in ~ is a critical.vslue; all solu-
tions with n> 3 approach a limit of 1 and those with n< 3 approach
a limit of O. Of”course, in all cases the ehsolute value of both’the
linear and nonlinear attenuation must approach zero as pPo pm

/
approaches 1. Since a has only a secon&wy effect on attenuation and
since the ~ansion fan has been replaced by a “negative shock,” the
refinement of transition in region a was not deemed necess~.

RESULTS AND DISCUSSION

~rimental Apparatus snd Procedure

Extensive shock-attenuation data were obtained in a high-pressure
.

shock tube 2 inches high by 1: inches wide in the L@@ey gas dynamics
.
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laboratory. This shock tube is the sane as that described in reference 1
with added velocity-measuring equipment. Light screens placed at eight
stations in the low-pressure section made possible measurements of the
con@ete distance-the history of the motion of the shock wave for a wide
range of shock pressure ratios and flow Reynolds nunbers. Figure 16 shows
schematically the arrangement of the shock tube and associated equipment,
and the low-pressure section with associated optical systems is illustrated
in figure 17.

Air at room temperature was used in both high- and low-pressure sec-
tions. The normal arrangement for high-pressure section air supply and
low-pressure section vacuum systems is shown in figure 16. In a limited
nuniberof low-density runs, evacuating the high-pressure section was nec-
essary; for these cases, an auxiliary vacuum system, identical with the
normal low-pressure system, was substituted for the pressure system shown.
Conversely, certain high-density runs required pressurization of the low-
pressure section; in this case a simple pressure system replaced the nor-
mal vacuw system. The pressures in both high- and low-pressure sections
were adjusted for each run. All data were obtained from tests where the
diaphra@n was punctured by a hand-operated plunger. lh this way diaphragm
pressure ratio and consequently, theoretical shock-pressure ratio pK/pm

were closely controlled. Bourdon-tube gsges were employed for pressure
measurements, and the vacuum systems utilized a mdified barometer for
pressures in the range from 4 inches mercury absolute to atmospheric
pressure, and a O to 100 millimeters mercury absolute pressure gage was
used for the low pressures.

Static pressures were structurally limited to 1,000 pounds per square
inch gsge in the k&gh-pressure sections and 250 pounds per square inch
gage in the low-pressure sections. A vacuum limitation of shout 0.01 atmos-
phere absolute pressure resulted for the low-pressure section because the
light screen systems becsme unresponsive for the low pressures. In the
high-pressure section, low pressures were limitedby failure of diaphragm
to burst properly.

Diaphragms made of thin metal foil were used for the low-pressure runs.
The most useful materials were soft sluminum foil, 0.001 inch thick, and
soft brass foil with a nominal thickness of either 0.0012~ or 0.0015,inch.
With these materisls, it was possible to obtain good bursts for pressure
differences across the diaphragm ranging from 10 pounds per squme inch to
100 pounds per square inch. Good bursts for the range of pressure differ-
ence from 100 to l,CK)Opounds per square inch were obtained-by using spring-
tempered brass shim stock with thicknesses rsnging from 0.008 to 0.021 inch
and scribed to vsrious depths in an x-shaped pattern along the diagonals of
a rectangle representing the shock-ttie cross section. When punctured
under pressure, the diaphrsgm split along the scribe marks, and the four
triangular pieces of material folded back against the wsll and presented
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minimum resistance
where this type of
tion compared with
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to the flow. All other conditions being equal, runs
●

burst took place resulted in minimum shock attenua-
attenuations resulting from bursts where metal or

acetate-~ype diaphragms were shattered. Material thicknesses and scribe
-4-

depths were determined so that puncturing pressure was just below the
pressure at which the diaphragm would have failed. The unscribed foil
diaphr~s used for smsll pressure differences split along the diagonals
in this sme way when punctured at the center, and optimum results were

—

also generslly obtained with these diaphragms.

Shock velocity measurements were made with miniat”me schlieren systems
located at eight positions in the low-pressure section. Figure 16 shows
schematically the position of these systems. The optical and electronic
systems were essentially the ssme as those used in reference 1, in which
the signal generated in a photomltiplier tube by deflection of abeam of
light upon the ttie was smplified and used to’trigge-ra thyratron. The””
thyratron output pulse, in turn, started or stopped a counter chronograph.
Figure 18 illustrates one complete optical system, including the chassis
containing the photomultiplier-smplifier-thyratroncircuit, which is shown
in figure 19. Wooden shields were .kmployedto keep stray room light from
falling upon the photomdtiplier tube.

.

For the multiple systems employed herein, each thyratron output pulse .

was channeled to two chronographs. These chronographs indicated shock
traversal time between any two adjacent stations, and any one of three
types of chronographs, 8 megacycles, 1.6 megacycles, and 1 megacycle,
was employed for each position. The overall time interval.between the
first ‘ad-last station= was measured with a 100-kilocycle
for a check upon the sum of the individual measurements.

The
measured
stations

Reduction of ~erimental Data

chronograph

experimental shock-wave pressure ratio was computed from the
time interval At for the shock to pass between two measuring
a distance AZ apart from the relation

This value was
midway between
be less than

was computed
an ideal.gas

1

PVs—=

()

UL.4L2-~
Pm 7+1%

assured to represent the shock strength
the two stations, and the maxtium error

at a position
was estimated

percent. “The theoretical shock pressure ratio p@/pu

(63)

to ,

from the $Liaphrsgmpressure ratio just prior to burst. For

(
the maximum error in pPo was estimated at O.lpm for a
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shock pressure ratio of 10 at pm = o.o@pm, ~td)j and the msxhum devia-

tion in the ratio of ca.uputed
(pB/pm)o ‘“tW (p131pm)o ‘estmted

to he approximately 1 percent.

Comparison of Theory and Experiment

The general method of comparison between theory and experim&nt will
be to compare the measured and predicted attenuation for particular values

of Ppo/Pm &d .+V= on individual curves. However, it is of interest

to first consider a few typical curves where the data for a constant value
of p@/pm but with varying values of @/vm are shown on a single plot.

Such plots are shown in figure 20 for val.ues,of p
Be/p. of 4.0 and 10.0.

The experimental data are aversges of several runs-& a given day and the
nuniberof runs for each data point is indicated on the figure. On some
runs in which the density chsmge across the shock wave was small, all
the velocity-measuring stations did not register because of variations
in their .sensitivity;snd, as a result, there are g~ps in the experimental

/

data.
( )

- 0.005.For exsmple, see fig. 20(b) at ~=
m

One fact Lmnediately evident is the nonrepeatability of some of the
data, even when compared on a daily aversge basis. An allowance for an

‘or ‘n %Jpm
of fi percent in the experimental and data-reduction

technique will bracket most of the observed discrepancy in the averages;
but certain runs at very low vslues of @ Vm still fall outside this

/
range.

If an attempt were made to extrapolate a curve from the datapoints
to Z = 0, an inflection would often be required in the curve between
1 =0 and Z = 6 to make it pass through the theoretical value of

p@o/pM at Z = 00 In order to illustrate this point, connecting lines

have been drawn in figure 20 for sane of the values of @lvm. Similar

behavior is found in the experimental data reported in figures 11 to 14
of reference 8. ~ow all the attenuation theories based onwsll effects

which exe known to the authors predict & > 0 in regions of lsminar
d12

or turbulent flow. At the transition point the t eory of the present

(L)

dpvs Pm

(L)

dpvs Pm
paper usualdy predicts

dl
>

dl
< 0. C!on-

lsminar transition
sequently, if this inflection is to srise frcm wall effects, it must be
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caused by transition. The interferometric studies of reference 16 have

found values of R* of about 1.4 X 106 smd 2.0 X 106 for p~opm = 2

and.24, respectively. Since values of R* of the order of 0.5 X 106
are required to cause an inflection at Z = 6 for ppo/pm = 4 and 10,

it does not appear likely that transition is the cause of this inflec-
tion. ‘Thisinflection will be discussed more fully later in this paper.

The unexpected inversion of Reynolds ntier
values of Z should be noted. For example, at

~. 0.005 xI.06 is aboutthe attenuation for
Vm

%)—=
v=

0.1 x106. For the

@tion for ~ = 0.1 X106
m

ssme value of Z and

effects for the lower
2

I
= 5.2 and ppo Pm =

one-fourth that for

Pm

is about one half that for

4.0, the attenua

%3—= 1 x 106,

The.spread with Reynolds nuniberof the experimental data at the
larger val~es of Z is-also much smaller than-would be expected on the
basis of the linesr theories (refs. 1 and 2) which predict attenuations

at a given Z/D yroportionsl to
[=~~ ~d [%); “for Imin=

10

and turbulent flow, respectively. This behavior has been notedby other
investigators (ref. 10).

Theoretical variation of p
/Vs Pm wtth. Z for values of

Q
1

—= 0.01 X106, 0.1 X 106, and 1 X106 for p
Vm $0/% =

presented in figures 21 and 22. These values are based
of the present paper. Lsminar and turbulent linesr and
pressure-distance predictions are shown in figure 21(a)

4.0 and10.O

on the theory
nonlineu

‘or %opm =

.

.

are

4.0,

and in figure 21(b) for pPo/pm = 10.0. The effect at larger values of Z

of the nonlinear correction is twofold; not only is there a marked reduc-
tion in the predicted attenuation when the attenuation is large but
there is also a marked decrease in the predicted Reynolds nmiber effect
on attenuation. The following table based on figures 21 and 22 for
1 = 22 feet illustrates these facts:

.

.
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-+)-M-22*?-’ ‘W” k)-(?L‘“ ?“”
m -

fme’ti~ti. farvmlue8c&$cQ -
e

O.cm x & O.l xl!+ Lx& O.o1x d 0.1x d lxd

q,l a 1.4s O.ba OJI 2.62 0.C6 O.1o .

%7 a =30 1.M -n 63 3.s3 s-e o

q,l 21 1.03 Ah .16 1.W .38 .lo .

~,-1 “~ U9 LA .* T.&? 2.5Q L.83 o

q,? 52 1.W .93 .73 2-6Y 2A6 1.0 1.23x d

q,r & Lw .* .72 UT ~.3E La 2.5x L@

The nonline~ attenuation predictions for values of R* = 1.25”x 106

and 2.5 X 106 are shown in figures 22(a) and 22(b). Since, for these

vslues of R*, QZ* = 0.122 end 0.244 foot for — = 106
Vm

the nonlinear curve for turbulent flow is nearly identical
transition and the turbulent curve is used in the figure.
and the table indicate that transition at a constant value

Mm

to that for
These curves
of R* appems

to decrease further the spread of attenuation with eJ1/vm. The discon-

‘TW/pmat Z* fS obvious.tinuous chsmge in d Another point of
dl

interest is the predicted variation of ~,T at Z = 22, PfjJPm = 10)

and R*

andlx

flow of

Q=l
Vm

Q.o.

= 2.5 x 106; the attenuation is less for Q/vm of 0.01 X 106
lo6 t~ it is for ~/v~ of 001 x 1060 ~ Cowletely la-

~ = 0.01 x 106 and the nearly completely turbulent flow of
Vm

X 106 result in almost identfcaJ.attenuations. The floirof

..1 x 106 iS mainly turbulent (z* =.,
~ca

attenuation is greater than for %@—=1X
Vm

transition has resulted in an inversion of

number under a certain set of conditions.
P@
— = 10, and Z = 22 feet, the pattern of
Pm
decreasing ~/v= is once egain evident.

2.4-4)end, as expected, the

106. Thus, in this case,

attenuation with Reynolds

However, for R* = 1.25 X106,

increasing attenuation with
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In figures 23 to 36 the variation of the average eqerimental shock
*

pressure ratio with distance is compsred with the various attenuation pre-
dictions of the theory presented earlier in this paper. The nominal
values of P@/Pm range from 1.5 to 10 and a#~vm covers the rqe

of 0.005 x 106 to 15 X106. The hydraulic dismeter of the shock tube
is 1/7 foot and the maximum value of Z at which ~slpm couldbe

determined was 17% feet; thus a msximwn experimental.value of ~= 125
D

resulted.

The marked improvement obtained from use of the nonlinear theory
when the predicted attenuation is lsrge becomes evident upon inspection
of figures 23 to 36. The unusual-behavior near Z +0 which was men-
tioned earlier csn nowbe exsmined more closely. For the higher values

@of shock pressure ratio (8, 9, and 10) snd low values of ~ ~ 0.01 x 106,
m

the measured attenuations at the first station are much smaller than any
of the theoretical predictions of this report or of reference 2. In fact,

for

tive

.

%=g.o ~d:= 0.0Q5 X 106, one set of averages gives a nega-
Pm m

[ )

.
%s > Ppoattenuation ~ ~ of such size that even the estimated

y’oo S-%/

%sl-percent-error margin is not sufficient to make — < ‘~ at the f~st

()

Pm Pm

station 1–=36.6 . In reference 9 it was also found that for high values

“f %$
the maxhmm shock velocities were greater than the velocity

theoretically computed for an inviscid fluid both with and without con-
sideration of vari~le specific heat and gaseous imperfections. Hj&ogen
and helium were used as the driver gas and air as the low-pressure fluid.
The maximum shock velocity occurred at about @ to 50 diameters from the
diaphragm.

On the other hand, references 4 and 8 did not find my values of

‘%R>@ for values of P~olPm in the ssme rsmge as the present
Pm Pm
experiments. These works proposed a “formation decrement” defined as
“the difference between the Rankine-Ilagoniotshock strength and the
maximum shock strength obtained after the formation distance.” (See
ref. 8, page 17.) This decrement was then attributed to the imperfect
diaphragm burst producing a series of compression waves which eventually
coalesce to form a shock weaker than that for the case of a theoretically
perfect burst.

-

b.
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.
For the lowest shock pressure ratios at the highest shock tzibe

Reynolds nuxibers,the opposite trend (measured attenuation larger than
. theory) is apparent. An extreme example of this is the attenuation meas-

a$
ured at the first station for — = 15 X106 and ‘~=2. (See fig. 25.)

Vm

Three of the four runs used in obtaining this averagemvalue showed this
behavior, which is attributed to the formation process.

The processes giving rise to the behavior for Z/D +0 are not
understood. The experimental data of this report generslllyshow a trend
of decreasing ~sIPpo with increasing @/vm at the first station.

If this effect were to be explained on a viscous basis, it would appear
that an opposite trend would appear; hence, the diaphragm burst is prob-
sbly the governing factor. The bursting phenomena &me in turn governed
by the diaphrs+g materials (weights and rupture characteristics) as well
as the pressure load. The diaphragm opening the (time for the diaphragm
sectors to fold against the wall) was estimated by a method which has
previously been checked experimentally. No correlation was found between
the opening time end the behavior nesr Z +0. It was noticed, however,
that, in the experimental runs which exhibited the most msrked inflections, “
foil diaphragms were used. On the other hand, some runs exhibiting very
little or no inflection ~so used foil diaphrqgns. Therefore~ it does
not appear that foil diaphrg sre solely responsible for the inflected
data points.

Regardless of whether the msxhmm experimental value of p
/Vs pm is

greater thsm or less than the ideal.value, the behavior nesr the diaphragm
station is not governed by wall.effects but by the diaphra+gnburst and
the resultant three-dimensional flow first est~lished. This highly rota-
tional viscous flow does eventually become essentially two-tiensional,
with the exception of mixing and vorticity at the interface between the
driver and driver gases. Consequently, any attenuation theory based on
wall effects cannot predict the initiel behavior nesr the diaphragm sta-
tion. As the distance from the diaphrsgm station increases, the ratio
of the influence of the initisl bursting flow to the influence of the
integrated wall effects decreases; therefore, the physical variation of

%@m should approach the theoretically predicted attenuated value

asymptotically as Z/D increases.

The experimental data of figures 23 to 36 approach the nonlinesr
theory (considering transition) in aruanner very similar to that just
described. For high values of ppo/% and low values of @/vm where

the effect of the formation process”results in a significsmt inflection,
the detiation from the nonlinear curve persists to the lsrger values of

—
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Zp. For ~
Q

= 10, 9, and 8 with .~ = 0.005 X 106, the formation
m

effect was so large that the experimental data never approached closely —

the nonl.inesxcurve for ~~ 125. As E@/v@
D

increased and the forma-

tion effect decreased, agreement between experiment and nonlinear theory
improved both in convergence of the ~ertiental end theoretical values
at a lower value of 2/D and in maximum deviation at the highest~values
of Z/D.

The nonlinesr curve for R* = 2.5 x 106 appears to agree more
favorably with the data over most of the range of ppo/%” At the lower

values Of l?po/pm t,hereappesrs to be a tendency for the data to depart

* s 2.5 x 106from the R curve and approach the R* = 1.25 x 106 curve.
The interfercxnetricmeasurements of reference 16 indicate such a trend
of increasing R* with increasing pb pm. This trend might d.so be

/
~cted fr~ co~~ison ~th ste@f-flow experiments since the wall

I

.—
cooling increases as ppo pm increases.

me comparisons of figures 23 to 36 between the nonlinear transitional -
theory and the experimental data show that this theory is valid for the
prediction of experimental attenuation except for the lower ~hock tube

—

Reynolds numibersat the higher pressure ratios. These latter conditions
are those under which it appears that the shock-formationprocesses dom-
inate the entire flow.

As stated previously, errors of unknown magnitude were introduced
by the averaging of well effects across the flow. The fact that the
present theory was able to predict fairly well the measured attenuations
over the entire range of shock pressure ratios end Reynolds nmbers.
(except near the diaphragm) indicates that the errors introduced in the
averaging process are either not serious or else self-compensating.

The range of boundsry-layer thiclmesses in region p (which has the
predominant influence on attenuation) was determinedly methods similar
to those of references 14 end 15 for leminsr end turbulent flows, respect-
ively. In the experiments reported herein, with the shock 20 feet from
the diaphrag, the maximum boundary-layer thiclmess varied approximately
from 0.006 to 0.25 inch for lsminar flow and from 0.07 to 1 inch for tur-
bulent flow. When,compared tiththe 0.75-inch half-width of the shock
tube, the turbulent thickness was significant for much of the experimental
data. On the other hand, leninsr boundary-1.syerthiclmess was generally
small. Thus the averaging process as used for this theory appears to
apply equslly well to thick as well.as to thin boundary layers.

—
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● -itude of Other Neglected Second-Order Effects

Since the treatment presented has considered only one source of
nonlinearity, it is advisable to exsmine briefly the influence of other
neglected sources. The three most obvious factors neglected are the
finite extent of the expansion fan, the nonlinear effect of the wave
interactions at the entropy discontinuity, and the reflections at the
shock wave.

The effect upon attenuation of treating the expansion wave as one
of finite width with varying free-stresm properties was calculated by
using the results of reference 14 for pressure ratios p~/pm of 1.6,

2.9, and4.5 (~te of -0.6, 0, and 0.5, respectively, in the notation of

ref. 14). Cmuputations were not made for higher shock pressure ratios
because the solut~ons in reference 14 did not extend above ~te = 0.6.

The lsminar-flow wall-shear and heat-trsmsfer distributions through the
cold-gas regions given by this reference were used to ccmpute the skin-
friction coefficient which was, in turh, utilized to compute the
attenuation.

Wheh the method of the present paper was used, it was found that,
for the three cases computed, the net change in attenuation through
approximation of the finite expansion by the negative shock was practi-

/
c- zero for p~o pm eqti to 1.6, -0.3 percent for pPo pm equal

I
to 2.9, and -0.6 percent for ppo/pm equal to 4.5. Altho&h the con-

tribution of the cold gas was itself influencedby the finite expansion
(up to a 50-percent decrease at the highest pressure ratio), the cold
gas contributes so little to lsminar-flow attenuation at these low pres-
sure ratios that the error in assuming a negative shock is negligible.

For higher shock pressure ratios the effect of the finite expansion
cannot be computed. However, examination of figure 5 indicates that, at
a shock pressure ratio approximately equsl to 6, the contribution of the
cold gas (with the negative shock) vanishes. At higher pressure ratios
the cold gas tends to decrease attenuation but this effect remains small
compared with the contribution of the hot gas. At a shock pressure ratio
of 20, for example, the effect of the cold-gas region has reached only
4 percent of the total. Thus, the finite expsnsion fan can influence
only a small part of the total attenuation, and the assun@ion of a nega-
tive shock should give reasonably accurate results.

The lsminar boundary-layer finite-expansion-fan solutions of ref-
erence 14 were also used to estimate the effect of the negative shock
assumption upon the attenuation predicted by reference 2 for the ssme
three pressure ratios. The errors in attenuation which arise through
the use of anegative shock me 1.4 percent at p@/Pm ew~ to I-=6,

.
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5.1 percent at P~o/pm
/

of 2.9, and 4.2 percent at pPo pm of 4.5. In .

this case, the contribution of the cold gas tends to decrease the attenua-
tion at all pressure ratios of interest, the contribution for the negative .
shock assumption reachhg a maximum at pm pm equal to 4.5.

/

No means of computing turbulent boundmy-layer flow inside a finite
expansion are “avail*le. However, according to the linearized negative
shock approach of this paper, the cold-gas contribution is always less
than 16 percent for pressure ratios up to 20-and slways less than 10 per-
cent for pressure ratios up to 10. (See fig. 5.) If the effect of the
finite expansion in turbulent flow is in the same direction as in laminar
flow, the cold-gas contribution,when a finite expansion fan is considered,
would be less thsm that for a negative shock. Thus it is assumed that the
effects of the difference between the finite-qansion and negative-shock
solutions for turbulent flow may be neglected,,at least up to shock pres-
sure ratios of 10.

The influence of nonlinearities in”the reflection and transmission
of waves at the entropy discontinuity was calculated for shock pressure

./
ratios pPo pm equal to 1.25, 2.0, 4.0, 6.o, 8.o, snd 10.0. The non-

Iinearities involved required that the shock-tube Reynolds numiberand
station be specified in order to cslculate the attenuation for this case.

I

.

The case of Q v. equal to 0.1 x 106 was chosen, and the attenuations
at 2/D equal to 70 and lkO were calculated for completely laminar (n =’1)
flow and completely turbulent (n = 7) flow.

For the lsminsr case, a difference of.about one-half percent was
found between linear and nonlinear calculations for the wave interactions
at the entropy discontinuity for p@/Pm of 10 and at Z/D equal to lb,

the nonlinear calculation predicting greater attenuation. Differences at
2/D of 70 and at lower pressure ratios were sn@.ler and generally in the
ssme direction, except at a v~ue of ppop- of”l.25 where the nonlinear

entropy result gave slightly less attenuation than the linesr result.
The deviations, which were smald.in all cases, were slso somewhat erratic
in their behavior.

Differences in the turbulent case were somewhat larger and ranged
up to 10 percent for a value of Z/D of lb and a value of pPo/pm of 10.

This condition is attributed to the larger relative contribution of the
cold-gas region a to the total attenuation for turbulent flow. (See
table I and fig. 5.) Again, the nonlinesr entropy calculation predicted
greater attenuation than the linem?ized except at a value of pPo/pm

of 1.25 where the trend was reversed. However, at the low pressure ratios ‘
the deviation was less than 1 percent and this trend is not considered to
be significant. .
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The effect of reflection of waves at the shock was estimated by the
following treatment: The unattenuated shock was assumed to be overtaken
by a single isentropic wave of strength equal to the total attenuation
for a given condition and station. The resulting one-dimensional inter-
action was computed snd the strength of the shock after interaction com-
pared with the strength predict- by the linearized theory. These results
~ere computed for s~ck pressure ratios of 10 and 4., -

For PPo/Pm equsl to 10, the three cases were compsred and the

results sxe given in the following table:

* ~ Attenuation
Percent difference

Va D
No reflection With reflection in attenuation

0.1 x 106 140 ~,1= -0.60 LJJ = -0.55 8

.1 U140 5,7 = -3.57 +,7= -3”16

.005 154 +,7 = -7=0 ~,7 = -6.14 12

S@The conditions of - . 0.~5 X106 ad ~= 154 represent the condi-
Vce JJ

tions under which maximum attenuation would be expected for the ~eri-
mental range of this paper.

In all cases, the shock is slightly strengthened by the interaction,
that is, attenuation is decreased. This is a trend which is opposite to
that generally computed for the exact entropy discontinuity. For P@/Pm
equal to 4, only one case was computed, that corres ending to the largest
predicted attenuation, up. 8equal to 0.02 X 10 , Z/D equal to 154.

In this case, the predicted attenuation was %3 - Ppo
equal.to -2. The

Pm

consideration of reflection gave %s -%0 eqml to -1.8. The differ-
Pm

ence in attenuation was 10 percent, again in the direction of decreasing
attenuation.

In general, then, the effects of the entropy discontinuity and the
reflected wave at the shock which were neglected in the linearized theory
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tend to oppose one another and sre of shout the ssme order of magnitude
for the worst cases (turbulent flow, strong shocks).

For the pressure range of this report it has been shown in the pre-
ced@g discussion that the two nonlinear effects having the lsrgest magni-
tude exe of opposite sign. The effect of neglecting the finite expansion-
fan width is small for lsminar flow and is also presumed to be small for
turbulent flow. Consequently, the neglect of these t~ee effects, which
have a net influence much smaller than the nonlinear P effect ~onsidered,
appears to be Justified for attenuation. Although the aforementioned
effects sre negligible for attenuation, they can appreciably influence
the pressure; density, and velocity distribution at paints removed from
the shock. This behavior mises from the fact that the relative influence
of the ~ waves of region 13decreases as the distance behind the shock
increases; the influence reduces to zero at and behind the entropy dis-
continuity. (See pages 33 and 34 and fig. 13 of ref. 1 for further
discussion.)

.

CONCLUDING REMARKS --

The theory of NACA Technical Note 3375, in which shock-wave attenua-
tion is calculated by use Of a linearized form of the hyperbolic system

.

of equations of-motion and ener~ and through the assumption of equivalent
incompressible steady-flow friction and heat-transfer coeff-icients,has
been modified in the following manner:

(1) Incompressible unsteady skin-friction coefficients have been
determinedly an integral method. The resulting unsteady inconpessible
skin-friction coefficient is corrected for compressibilityby a refer-
ence temperature method.

(2) A nonlinear regional approach has been employed to permit the
extensions of the theory to large attenuations. This approach modifies
only the forward running waves generated in the hot-gas region; these
waves are shown to dominate the attenuation process.

(3) W=sition effects are considered. ‘Ilkmethod assumes instm-
tsneous transition from lsminsx to turbulent flow. The Reynolds number
of transition then becomes a psremeter of the attenuation problem.

The modified theory has been evaluated for a range of shock pres-
sure ratios of general experimental interest. Curves are presented to
permit easy prediction of attenuation for shock pressure ratios to 20
smd a range of shock=b.ibeReynolds nunibers. Results for the linearized
theory with all lsminar smd all turbulent flow are compsredwith results
of NACA Technical Note 3278, and the predicted attenuations are found to
be in fair agreement.
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Experimental local shock pressure ratios have been determined for
ideal shock pressure ratios frcm 1.5 to 10 for a range of shock-tube
Reynolds numbers and position from the diaphrsgm station.

Comparison of the modified nonlinesx theory using a transition
Reynolds nuder based on flow length of 2.5 x 106 with the experimental
results shows good sgreement except for the following situations:

(1) The highest shock pressure ratios at the lowest shock-tube
Reynolds numiberswhere the effects of the nonperfect diaphragm burst
are believed to dominate the flow.

(2) The lowest shock ressure ratios, for which a lower transition
%Reynolds number (1.25 x 10 ) crppearsto give better sgreement.

The effects of considering a finite expansion fan, the exact intera-
ction at the entropy discontinuity, and reflection at the shock wave
(all of which are neglected in the present treatment) are calculated for
certain cases. The net effect of these three contributions is shown to
be small compared with the nonlinearities accounted for in the stepwise
regional calculation.

Lsngley Aeronautical Laboratory,
Nationsl Advisory Committee for Aeronautics,

Langley Field, Vs., June 25, 1958.
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SUMMARY OF LINEARIZED ATTENUATION EQUATIONS

The changes in the characteristic parameters P, Q, and S/R as

a function of local skin friction are derived in reference 1 and those
appropriate to shock-wave attenuation are summsrized in this appendix.

Subscripts refer to positions on the wave di~ram of figure 1. —

(Al)

(M) ●

✎

Pf - Pc

[

kd
(Pc-Pb) +(Qf-QJ+N*@8 P*

—.1+ J’
~Ed Cf, p(k) M - !%,.; ~ 1Cf,a(t)d(k)(A4)

q30 - Pa Pm + Q* 7 2J

()

apo
-1

G

where

(A5)
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(A7)

(A8)

(A9)
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APPENDIX B

DERIVATION OF EQUATION FOR ~

The derivation for Z1 will be obtained and then generalized to

arbitrary N. The wave diagram of figure 9(a) shows the location of the
numbered points. me S@bO~ X6 denotes the distance of the poiht 6

from the origin, and so forth. The following equations are obtainedby

simple geometiy from figure 9(a):

X2 = ua~t2

X2 = UsItl + U11(t7 - tl) + (U

(Bl)

+ a)I(t2 - t7) (B2)

.

Combining.equations(Bl) and (B2) yields
.

[

3= 1+
tl

Al,sofrom figure 9(a),

USI

1

- U1l t2

U1l-(U+a)l~-

Xll = uaItlJ

ua~ - TJ1l

UH - (U+a)l
(B3)

(B4)

XII = Us1t1+Un(t7 - tl) - Us1(t7 - tlo) + (U+ a)l(tU - tlo) (B5)

‘n = u~t~o + (u+

Combining equation (B4) with equation
with equation (B6) yields

+(%1 - tlo) (M

(B6) andcotiining equation (B5)

%1
aI

—=
tlo (U.+dl ‘USI

(B7) .

r



NACA TN 4347

and

Now

Substitution of
duces

%0 %1 ()‘“II ~-l—=
tl U~I - UI tl

55

equations (B3), (B7), and (B8) into equation (B9) pro-

(B8)

(B9)

‘= --wzl~ ‘s1 - % (B1O)
21 UsI --UX (U+ a)l - UII tl

or

z~

()

22
—=z~—-I (Bll)
11 z~

Since the origin h figure 9 couldbe shifted to any srbitrary
location and the sane geometrical relations above couldbe derived in
the new location the generalized formula for ~ csnbe written from

inspection of equations (B1O) and (Bll) as

z~ =
USN-%+1 %

USN-UN (U+a)N -%+1
(B12)
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Figure 35.- Comparison of aversged experimental locsl shock pressure

qkJratios with various theoretical predictions. = 9.0. Flsgged
Pm

tid unflagged synibolsare used to distinguish between averages from
different days.
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